

THE ONLY CONTROL WE HAVE OVER THE DURATION OF OUR LIFE IS TO SHORTEN IT, AND WE DO THAT ALL THE TIME.

Jay Olshansky

Professor School of Public Health University of Illinois at Chicago

ARE WE LIVING LONGER?

Recent trends and increasing differences in life expectancy present opportunities for multidisciplinary research on aging Nature Ageing 2021 112 Eileen Crimmins

LOW LEAN MUSCLE MASS, MUSCLE STRENGTH AND PHYSICAL FUNCTION ARE RISK FACTORS FIOR DISABILITY, FRAILTY AND LIFE EXPECTANCY

The Copenhagen Sarcopenia Study: lean mass, strength, power, and physical function in a Danish cohort aged 20–93 years

Journal of Cachexia, Sarcopenia and Muscle 2019 7 Suetta et al

DNA METHYLATION BIOMARKERS IN AGING AND AGE-RELATED DISEASES

Epigenetic Age Acceleration

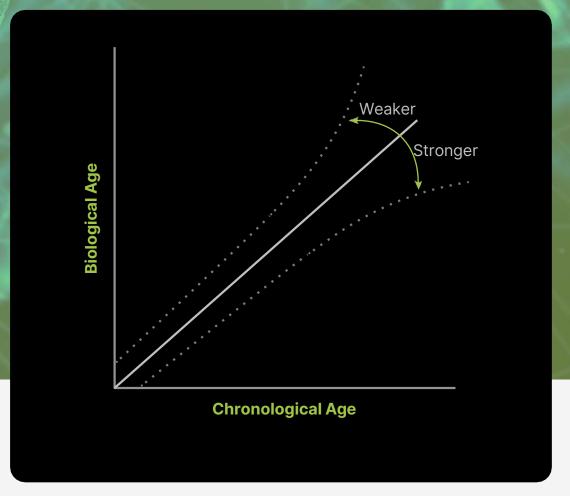
Horvath Clock

Cancer Parkinson's disease All-Cause Mortality

Levine Clock (DNAm PhenoAge)

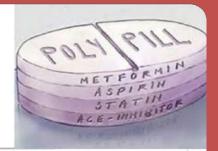
Cancer
Cardiovascular Disease
Coronary Heart Disease
Dementia
Parkinson's disease
All- Cause Mortality

Lu Clock (Grim Age)


Cancer
Coronary Heart Disease
Fatty Liver Disease
All-Cause Mortality

Hannum Clock

Cancer All-Cause Mortality


DOES STRENGTH PLAY A PART?

Grip Strength is inversely associated with DNA methylation age acceleration Journal of Cachexia, Sarcopenia and Muscle 2023 14 108-117

Papers

A strategy to reduce cardiovascular disease by more than 80%

N J Wald, M R Law

Abstract

Objectives To determine the combination of drugs and vitamins, and their doses, for use in a single daily pill to achieve a large effect in preventing cardiovascular disease with minimal adverse effects. The strategy was to simultaneously reduce four cardiovascular risk factors (low density lipoprotein the diseases common. Cardiovascular disease can be avoided or delayed, but the necessary changes to Western diet and lifestyle are not practicable in the short term. Randomised trials show that drugs to lower three risk factors—low density lipoprotein (LDL) cholesterol, blood pressure, 24 and platelet function (with aspirin) 28—reduce the incidence of ischaemic heart

Editorial by Rodgers

Department of Environmental and Preventive Medicine, Wolfson Institute of Preventive

A strategy to reduce cardiovascular disease by more than 80%:
British Medical Journal 2003 326:7404

1/3 patients don't take medication even 90 days after a myocardial infarction

50% don't take them at all!Mayo Clin Proc. 2011 86
(4): 304-314

POLYPILL A DAY SHOWS A 11% DECREASE IN ALL CAUSE MORTALITY

Association of polypill therapy with cardiovascular outcomes, mortality, and adherence: A systematic review and meta-analysis of randomized controlled trials Progress in Cardiovascular Disease 2023 73 48-55 Rao et al

10,000 STEPS A DAY SHOWS A 23% DECREASE IN ALL CAUSE MORTALITY

Daily steps and all-cause mortality: a meta-analysis of 15 international cohorts

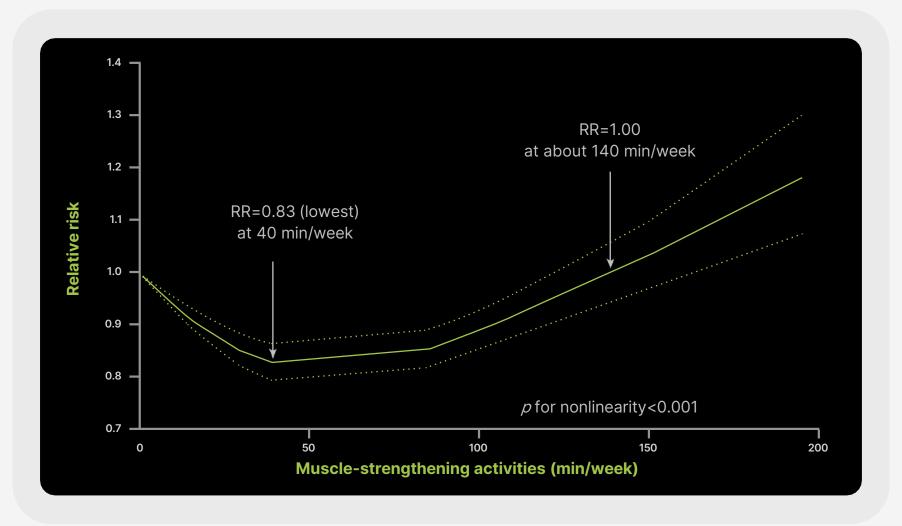
Lancet 2022 7 (3) 219 Paluch et al

MUSCLE MASS SHOWS A 17% DECREASE IN ALL CAUSE MORTALITY

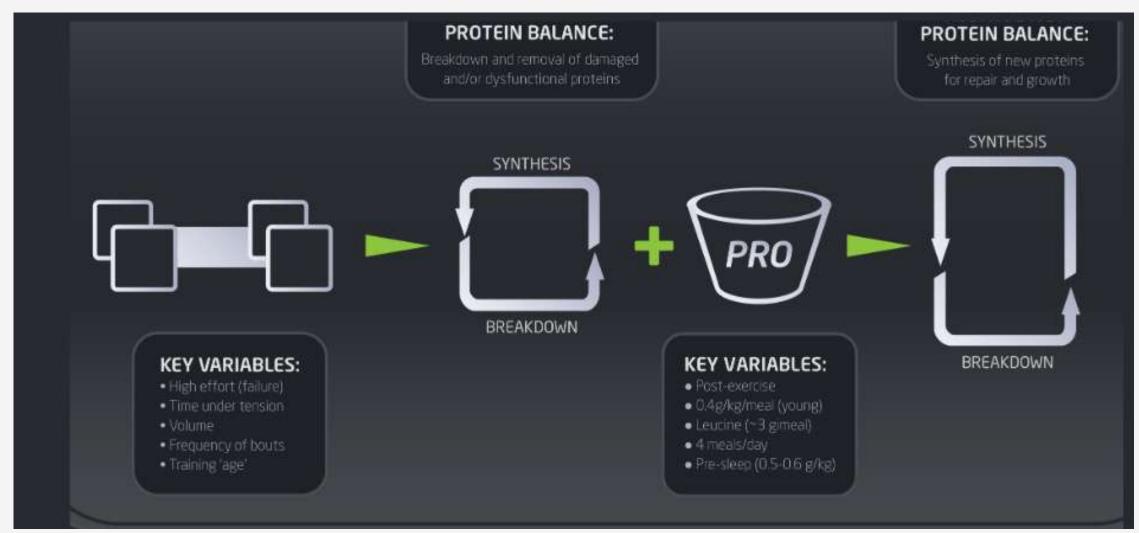
Muscle-strengthening activities are associated with lower risk and mortality in major noncommunicable diseases: a systematic review and meta-analysis of cohort studies Brit J Sports Med 022;56:755-763. Momma et al

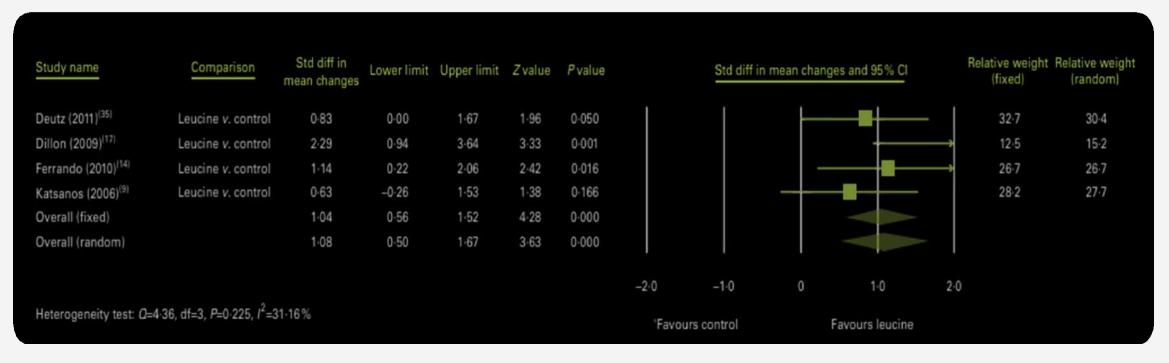
MUSCLE STRENGTH SHOWS A 10% DECREASE IN ALL CAUSE MORTALITY

Muscular Strength as a Predictor of All-Cause Mortality in an Apparently Healthy Population: A Systematic Review and Meta-Analysis of Data From Approximately 2 Million Men and Women Arch Phys Med Rehabil 2018 99 (10) Garcia –Hermoso et al


MUSCLE STRENGTH SHOWS A 10% DECREASE IN ALL CAUSE MORTALITY

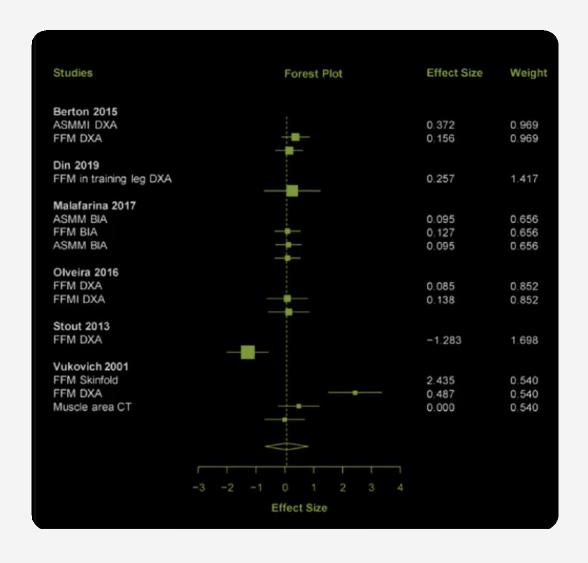
Muscular Strength as a Predictor of All-Cause Mortality in an Apparently Healthy Population: A Systematic Review and Meta-Analysis of Data From Approximately 2 Million Men and Women Arch Phys Med Rehabil 2018 99 (10) Garcia –Hermoso et al




IS THERE AN OPTIMUM **AMOUNT OF STRENGTH?**

THE BEST EVIDENCE: MUSCLE/PROTEIN INTAKE

THE BEST EVIDENCE: LEUCINE


The effectiveness of leucine on muscle protein synthesis, lean body mass and leg lean mass accretion in older people: a systematic review and meta-analysis

THE BEST EVIDENCE: CREATINE

Author Year	Subjects	Duration	Dosing Protocol	Primary Variables	Results	Adverse Events
Grindstaff et al. 1997	18 (7 male, 11 female) junior competitive swimmers	9 days	21 g/day for 9 days	100-m sprint performance arm ergometer performance	↑ sprint swimming performance	None reported
Kreider et al. 1998	25 college football players	28 days	15.75 g/day for 28 days	total work during sprints on a cycle ergometer bench press volume total volume	↑ total work ↑ bench press volume ↑ total volume	None reported
Noonan et al. 1998	39 college football players	9 weeks	20 g/day for 5 days 100 or 300 mg/kg/fat-free mass for 8 weeks	bench press 40-yard dash % body fat fat-free mass vertical jump	↑ bench press ↑ 40-yard dash ↔ % body fat ↔ fat-free mass ↔ vertical jump	None reported
Peyrebrune et al. 1998	14 male college swimmers	5 days	9 g/day for 5 days	single 50-m sprint time repetitive 50-m sprint time	⇔ single 50 m sprint time ↑ repetitive 50 m sprint time	None reported
Stout et al. 1999	24 college football players	8 weeks	21 g/day for 5 days 10 g/day thereafter	vertical jump 100-yard dash bench press strength	↑ vertical jump ↑ 100-yard dash ↑ bench press strength	None reported
Jones et al. 1999	8 elite ice hockey players	11 weeks	20 g/day for 5 days 5 g/day for 10 weeks	5 × 15 s skating sprints 6 timed 80-m skating sprints	† 5 × 15 s skating sprints † 6 timed 80 m skating sprints	None reported

Creatine for Exercise and Sports Performance, with Recovery Considerations for Healthy Populations

THE BEST EVIDENCE: HMB

The Effect of $\beta\text{-hydroxy-}\beta\text{-methylbutyrate}$ (HMB) on Sarcopenia and Functional Frailty in Older Persons: A Systematic Review

Longevity – the holy grail? nuritas.com 20

THE BEST EVIDENCE: MYOSTATIN

Deldicque et al. (2008) [55]	9 young men on RT	Acute (measures after 5 d of creatine loading)	Creatine (21 g/d; 7 g 3 x/d)	\longleftrightarrow		
Sire et al. (2019) [70]	20 patients submitted to hip replacement	8 week	Amino acids (4 g 2 x/d)	\downarrow serum myostatin levels for amino acid (from 1.2 \pm 0.2 to 0.9 \pm 0.3 ng/mL) and placebo (from 1.3 \pm 0.3 to 1.1 \pm 0.4 ng/mL) groups		
Paoli et al. (2015) [22]	18 active young men without experience with RT	8 week	High-protein diet (1.8 g protein/kg BW/d) vs. normal-protein diet (0.85 g protein/kg BW/d)	\uparrow plasma myostatin levels after RT session (pretraining and posttraining levels: from 3.66 \pm 1.42 to 12.0 \pm 2.5 ng/mL) in the high-protein group		
Bagheri et al. (2020) [52]	30 young men	12 week	Whole eggs (3 units) vs. egg whites (6 units)	\leftrightarrow		
Non-protein supplements						
Willoughby (2004) [75]	22 untrained health men	12 week	Cystoseira canariensis (1200 mg/d)			
García-Merino et al. (2020) [81]	44 training endurance athletes (men)	10 week	Cocoa (5 g cocoa powder, 425 mg flavonoids)	\leftrightarrow		
Mafi et al. (2018) [83]	62 older individuals	8 week	Epicatechin (1 mg/kg BW/d	↓49% in plasma myostatin levels in the RT plus epicatechin group than in the RT group		
Gonnelli et al. (2021) [87]	50 postmenopausal women	180 d	Calcifediol (20 or 30 µg/d)			
Bagheri et al. (2021a) [79]	40 male wrestlers	12 d	Spirulina (3 g/d)	↓serum myostatin levels by 0.1 ng/mL		

The Effects of Dietary Supplements, Nutraceutical Agents, and Physical Exercise on Myostatin Levels: Hope or Hype?

Medical Animation • Digital Solutions

PeptiStrong

By NURITAS

RECOVER

REC

01

First **Al discovered**

new ingredient

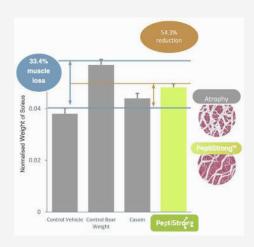
Clinical claims

on Strength, Power, Recovery and Energy 02

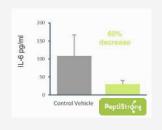

4 benefits
in one 2.4 g dose
from a fava bean

Strong Patents, multiple formulations

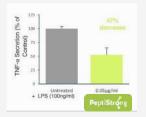
Muscle and Meetabolic Health - Redefining healthspan


Anabolic cell signalling plant peptides

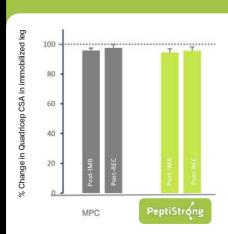
Significantly increases protein synthesis more effectively than whey protein


Effect of PeptiStrong on S6 phosphorylation.
C2C12 cells were treated with whey or
PeptiStrong for 30 minutes following a
starvation protocol and compared to
untreated cells.

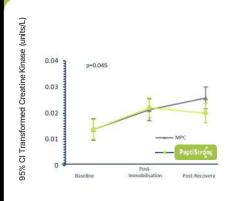
Significantly reduces muscle loss more effectively than milk protein


Effect of peptistrong on soleus muscle mass following hindlimb unloading. C57BI/6 mice were treated with 650mg/kg/day with peptistrong or casein over 18 days.

Significantly reduces inflammation in vivo and in vitro

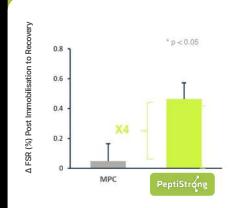

Effect of PeptiStrong in circulation IL-6. C57BI/6 mice were treated with 650mg/kg/day with PeptiStrong over 18 days.

Effect of PeptiStrong on TNF- α secretion in THP-1 differentiated macrophages.

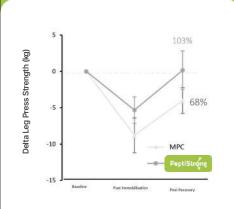

Strength and Power clinical claims

Muscle Mass

Effect of PeptiStrong on muscle mass in quadricep muscle following two week recovery period after one week immobilization. Males aged 18-35 were treated with 20g/day of PeptiStrong or MPC over 23 days.

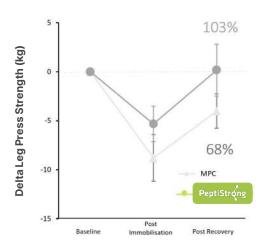

Plasma CK

Effect of PeptiStrong on plasma levels of creatine kinase at baseline, following 1 week of immobilisation and following two week recovery period after one week immobilization.


Males aged 18-35 were treated with 20g/day of PeptiStrong or MPC over 23 days.

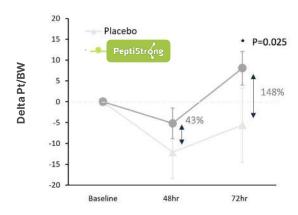
Muscle Protein Synthesis

Effect of PeptiStrong on muscle synthesis in quadricep muscle following two week recovery period after one week immobilization. Males aged 18-35 were treated with 20g/day of PeptiStrong or MPC over 23 days.


Leg Strength

Effect of PeptiStrong on leg press strength compared to baseline following two week recovery period after one week immobilization. Males aged 18-35 were treated with 20g/ day of PeptiStrong or MPC over 23 days.

Recovery claims


DAILY SERVING 20g Immobilisation Trial

Effect of PeptiStrong on leg press strength compared to baseline following two week recovery period after one week immobilization. Males aged 18-35 were treated with 20g/day of PeptiStrong or MPC over 23 days.

DAILY SERVING 2.4g Strength Recovery Trial

Total Change of Peak Torque per Body Weight from Baseline

Effect of PeptiStrong on knee extension strength recovery compared to baseline after a muscle injury protocol at 48hours and 72 hours. Males aged 30-45 were treated with 2.4g/day of PeptiStrong or MCC (Placebo) over 17 days.

Poor blood sugar control is a huge health problem

96 million people (1 in 3) in the US have Prediabetes

Using continuous glucose monitor's (CGM's) in Diabetes is well established to adapt insulin dosage

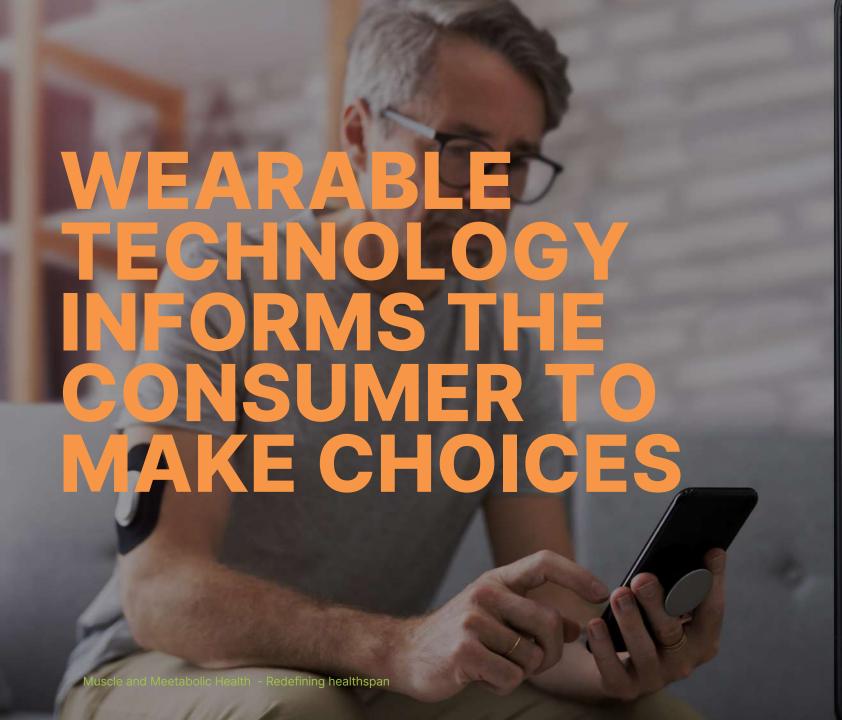
Reducing the burden on the pancreas and insulin production saves lives

Tracking blood glucose is an **emerging bio-hack** to reduce inflammation and burden on insulin production

What if rather than avoid low GI food, we could add DPP4 inhibition to food?

What if we **flatten the glucose curve** and reduce the burden?

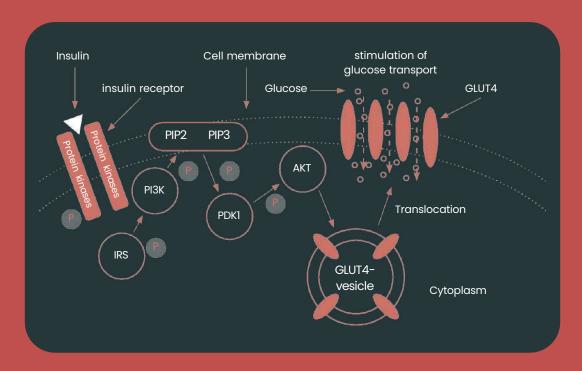
What if we **avoided the poor compliance** with diets by making food the health mechanism?

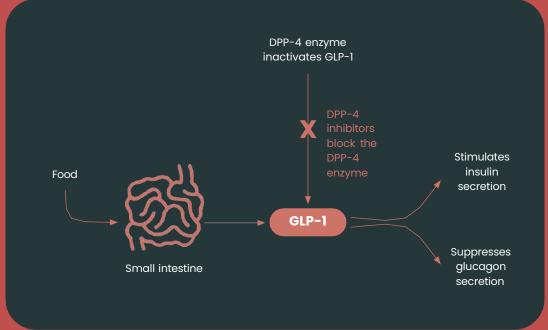

METABOLIC HEALTH

Metabolic health: a priority for the post-pandemic era

Lancet 2021 9 (4) 189

\$8000M GROWTH INDUSTRY CONTINUOUS GLUCOSE MONITORING

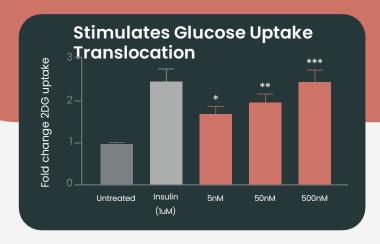


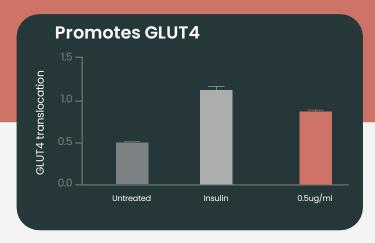


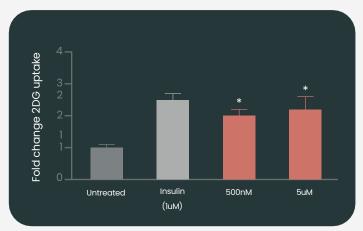
NURITAS							
	00						
		PeptiCentrol By NURITAS	DPP-IV Inhibitor	Berberis aristate	Vitus vinifera	Mulberry Leaf	Fenugreek
	Reduce Blood Glucose	~	~	~	~	~	~
	Increase Satiety	✓	×	×	×	×	×
	Clinical Trials	✓	~	~	×	~	~
	Natural	~	×	~	~	~	~
	Mechanism	1. Promotes glucose uptake 2. Increases GLUT4 translocation 3. Inhibits DPP-IV	1. Prolongs GLP-1 activity	1. Decreases glucose-6- phosphatase activity	1. Activates insulin signalling	1. Inhibits alpha- glucosidase	1. Activates insulin signalling

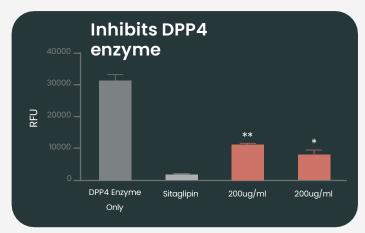
Muscle and Meetabolic Health - Redefining healthspa

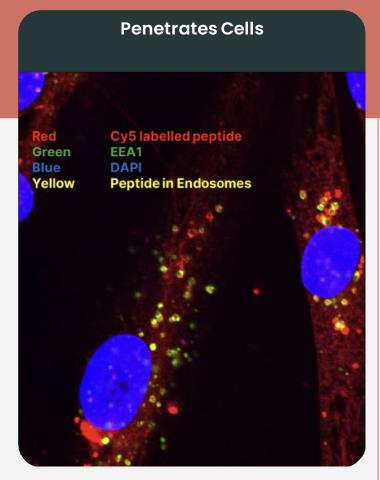
How does PeptiControl work?

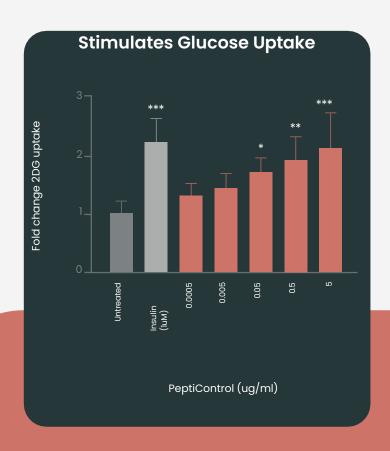


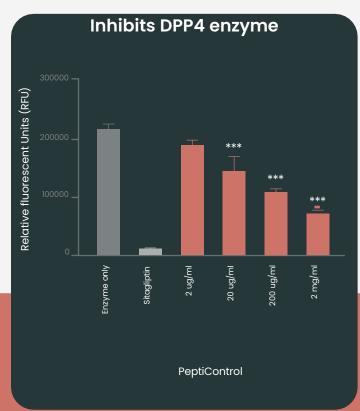


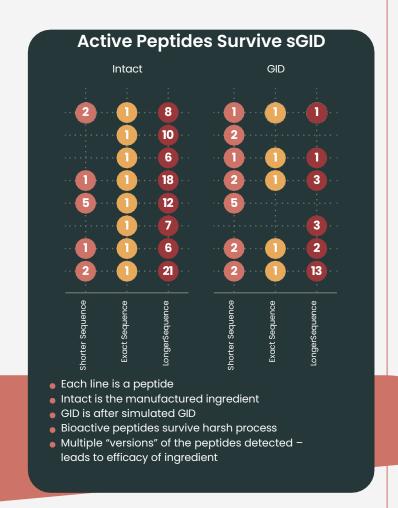

Glucose Uptake: At the cellular level, glucose transport into skeletal muscle is the rate-limiting step for whole body glucose uptake and a primary site of insulin resistance.


DPP-IV Inhibition: Inhibition of this enzyme blocks the breakdown of the incretin hormone GLP-1, a key hormone for glucose homeostasis. Prolonged GLP-1 activity suppresses hepatic glucose output, stimulates insulin release, mitigates glucose absorption, and increases peripheral glucose utilisation.


How does PeptiControl work - Peptides







^{*} Each colour bar on a graph is a different peptide

How does PeptiControl work - Peptides



Preclinical Work

Mice were treated with PeptiControl (400 mg/kg/day), Rosiglitazone (15mg/kg/day) or vehicle by oral gavage.

Initial Clinical Work

Pilot Trial Summary

- Trial duration: 12 weeks
- Trial cohort: 63 subjects, between
 18 75 years old
- **Trial criteria:** HbA1c levels ranging from 5.7 6.4 %
- Sampling frequency: 1 initial screen visit followed by 4 clinical visits over 12 weeks.
- Study site: Clinic of Endocrinology,
 Riga, Lativa under Prof Valdis
 Pirags.

Key Findings

Significant reduction of HbAlc% following
PeptiControl treatment (15g/day) compared
to control (Mean ± SD; P=0.013)

PeptiC**ó**ntrol

New Clinical Study

Clinical

Screening Screening for pre diabetes (Day-10 to 1) Enrolment Age, Gender, Height, Weight,

Screen for Fasting blood

Day 0

Visit 1 Randomisation start CGM Baseline Stroop

Safety Bloods

Continuous glucose monitoring

Stroop 1: selective attention capacity and skills

Day 2

Visit 2 PeptiForce administration OGTT

OGTT

Adverse event reporting

Continuous

monitoring

Stroop 2:

and skills

425 mg

870 mg 2610 mg

Placebo

selective atten-

tion capacity

PeptiControl

glucose

Adverse event reporting

Visit 3 Complete

Continuous glucose monitoring

Stroop 3: selective attention capacity and skills

Safety bloods

Day 7

Visit 4 Complete AE reporting
End of Trial

Day 10

Adverse event reporting

Three Doses

435mg 870mg 2610mg

Endpoints

Flattening of glucose spike
Satiety
Time in range
Insulin levels
Selective attention capacity
Fasting blood glucose

Potential Claims

Supports healthier glucose homeostasis

Reduce area under the curve of glucose

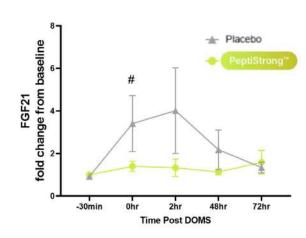
Sharpen post-meal cognition

Reduce the impact of carbohydrates on your diet

Helps sustained energy throughout the day

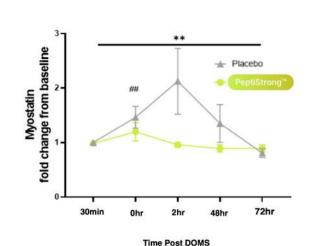
Create a feeling of fullness

nuritas.com

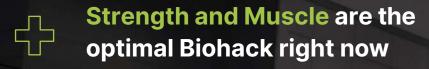


by NURITAS

Myostatin suppression: keep what you have


FGF21

Regulates protein synthesis Increased under muscle stress and mitochondrial disfunction


Effect of PeptiStrong on leg press strength compared to baseline following two week recovery period after one week immobilization. Males aged 18-35 were treated with 20g/day of PeptiStrong or MPC over 23 days.

MYOSTATIN Inhibits protein synthesis

Effect of PeptiStrong on knee extension strength recovery compared to baseline after a muscle injury protocol at 48hours and 72 hours. Males aged 30-45 were treated with 2.4g/day of PeptiStrong or MCC (Placebo) over 17 days.

Longevity – the holy grail? nuritas.com 44

Longevity and grip strength can be correlated

Multiple ways of influencing the MTor Pathway

Sarcopenia is more that muscle loss > 30 hold on to what you have

Leucine is the leading BCAA, with the best evidence

Keep what you have when it comes to muscle and strength for life

Al discovered
PeptiStrong a plant based
peptide network

Four clinically proven claims in one ingredient

Longevity – the holy grail? nuritas.com 45

See nature differently

